


Abstract— This paper reports the design and implementation

of a navigation planner for a multi-robot system intended for

collaborative storytelling. It supports multiple users to deliver

navigation plan requests over multiple robots, which can include

high-level motion behavior.

I. INTRODUCTION

The use of robots as experimental learning tools in school
settings is becoming increasingly popular within the education
community due to the reported positive effects and the open
horizons that it can have in enhancing the learning experience
(e.g. [9][7]). While many of these proposed solutions employ
static robots, we are slowly moving towards the design of
robots with limited navigational capabilities that can be
programmed by children in the context of STEM activities
through Scratch extensions or similar block languages [12][1].
Naturally, the addition of programmable robot motion can
enable designers to create more complex and, ultimately, more
beneficial experiences for children. However, previous
observations in our own research [3] suggest that motion in
robotic learning settings can cause children to (1) allocate
much of their cognitive resources to control the robot due to
the number of low-level commands that are required for fine-
grained user control (e.g. move forward, stop, turn left, etc.),
and (2) disconnect from the designed (learning) experience. In
both cases, reaching the desired learning goals/outcomes can
become difficult or even impossible. For instance, in a live
storytelling application in which children have to dynamically
create and play out a story, controlling the movement of the
robots at such a low-level diminishes the focus on the
storytelling process and enhances how fun driving robots is.

This is in-and-of itself an important problem, but when
considering that the community is slowly transitioning
towards related research in multi-robot settings [10][8][2][6],
solving it becomes of critical importance. Thus, in this paper,
we propose a potential solution to the problem by facilitating
the manner in which robots are controlled by children. More
specifically, we report the design and implementation of a
high-level planner using reciprocal collision avoidance
(ORCA) [13] for a multi-robot setting supporting collaborative
storytelling (see Figure1).

* A. Catala was at the Human Media Interaction group of the University

of Twente. He is now with the Research Center on Information Technologies

of University of Santiago de Compostela (CiTIUS), Spain (phone: +34 8818

16460; e-mail: alejandro.catala@usc.es).

A. Moreno is with the Creative Media and Game Technologies group at

Saxion University of Applied Sciences, Netherlands. (e-mail:

a.m.morenocelleri@saxion.nl).

II. SYSTEM OVERVIEW

A. Requirements

There are several requirements to be covered in the context
of our project that impact directly on the navigation features.
The most important three are Safety, Multiplicity and
Autonomy. Safety means providing methods to prevent robots
from falling off the table by accident and preventing them from
colliding with each other or with obstacles. Multiplicity is
supporting multiple users and multiple robots in the same
interactive setting. Finally, Autonomy refers to providing
assistance by means of high-level commands rather than low-
level, diminishing users’ workload as discussed earlier.

Figure 1. Two robots in our storytelling setting.

Figure 2. Architecture components.

B. Architecture and Implementation

Our system is designed in a modular fashion, and is
composed of 4 modules (Figure 2). This not only facilitates
testing, but also makes replacing the implemented components
in the future easier. The components are integrated through
ROS by sharing information in the overlay network.

A video associated to the submission can be found at:

https://www.youtube.com/watch?v=Gf7TWT4WAmo

Publish/Subscribe
topic ROS network

Su
rfaceb

o
t

BT

BT –
Zumo
robot

ROS

Tr
ac

ke
r

Open
CV

ROS

C
o

n
tro

ller

UIROS

P
la

n
n

er

NAV

SIM

ROS

Tablet unit

Location

Motion
commands

Location
Command request

Location,
Path progress

Motion commands,
Path progress

Command
request

Smart Navigation for a Storytelling Multi-Robot Setting*

Alejandro Catala, Alejandro Moreno

Cite as: Alejandro Catala, Alejandro Moreno. Smart Navigation for a Storytelling Multi-Robot Setting.
IROS 2018 Second Workshop on Multi-robot Perception-Driven Control and Planning, 3 pages, 2018.

https://www.youtube.com/watch?v=Gf7TWT4WAmo&feature=youtu.be

Surfacebot: The hardware of the robots in our setting

actually consists of a set with a robotic unit and a tablet. The

tablet is just a 7-inches Android tablet embedded into a plastic

case and the base is a Zumo robot for Arduino by Pololu2

expanded with a Bluetooth shield, which results in a non-

holonomic two-wheeled robot. Regarding motion

functionality, the tablet app uses the Bluetooth link to send

low-level motion commands to the microcontroller that

controls the motors. The case has a unique fiducial marker that

is used to track the position of the robot.

Tracker: As robots do not have on-board instrumentation
for solving positioning, we opted for implementing a tracker
based on fiducial ArUco markers [4]. This C++ ROS node is
responsible for publishing the location and rotation of the
Surfacebots along with timestamps into the ROS topic. We
used a Logitech C920 webcam which provides top-down
1920x1080@30fps RGB images. A virtual coordinate system
is automatically created by placing two special markers (origin
and limit) in opposite diagonal corners of the playing field
(roughly 4m2 in our setting). The rotation of a robot is
determined by the difference between its marker rotation and
the camera, whereas the position is given within the created
virtual coordinate system. The relative position of the robot
marker with regard to its center is modeled, making it possible
to have different offsets for each robot. The loosely-coupled
design of our architecture would make it possible to replace
this component with on-board positioning subsystems.

Controller GUI app: This component has a Graphical User
Interface implemented in a touch-enabled Android app as seen
in Figure 3. It gives a view of the tracked system, allowing
users to manipulate robot behaviors and motion plans.
Multiple controller apps can be connected to the system,
enabling multiple users to control either the same or different
robots. Users can instruct robots to move in two different
ways: tapping a desired destination, and drawing a path for the
robot to follow. Paths can be personalized by adding behavior
modifiers which are triggered at specific locations in the path.
These modifiers can be speed modifiers changing the travel
velocity, storytelling specific behavior modifiers such as
speech, visual and emotional behavior created with other tools,
and motion modifiers that implement specialized movement
commands that expand the navigation capabilities. For
example, it can implement arbitrary rotations or in-place
movements that have priority over navigation and must be
handled in this way because they entail a variation on the path
control.

A remarkable feature of our system is that it supports both
live and batch mode. In live mode, plans are sent to the planner
as soon as input touch commands are carried out (e.g. a path

2 Pololu Zumo Robot: https://www.pololu.com/product/2510

or a target are given to a robot). In batch mode, the plans are
sent only under request, facilitating users to design plans for
an arbitrary number of robots on screen and executing them
simultaneously.

Planner: This core component is implemented as a Java
ROS node. It listens to the locations and rotations, which in
our current implementation come from the tracking
subsystem, and the plans requests coming from the multiple
controller GUI apps that dynamically may have joined the
system. It uses this information to run a simulation and
calculate the velocity vectors that will allow each robot to
follow their paths without colliding into each other. This is
then pushed to the robot, to actuate it to move in the calculated
fashion. The plans requests are processed as follows. Each
plan is about a single robot. If multiple plan requests are about
the same robot, the last received request will prevail. So
conflicts between multiple users should be solved by relying
on social protocols rather than technology, which is an
acceptable solution as there is visible immediate feedback. For
target destination requests, a single path between the current
and target locations is created. For path requests, the path is
broken into smaller segments by sampling it at regular
intervals, resulting in sub-paths that sequentially make up the
entire path (see Figure 4). Modifiers are considered during this
process so that they are either at the end or start of a sub-path.
The navigation planner will drive the robots towards the first
path element in their corresponding paths by setting the vector
velocity for each robot. This is carried out by integrating the
navigation algorithm based on optimal reciprocal collision
avoidance3 [13] subject to differential-drive constraints as
formulated in [11]. With this approach, we treat the navigation
as an interactive and dynamic process in which the goal is not
just to reach a final destination but may include showing
motion behavior while following a trajectory. As a
consequence, we do not strictly plan each path from begin to
end, but the planner holds a set of intermediate sub-paths that
will be followed while avoiding collisions and responding
dynamically to registered obstacles.

Figure 4. Navigator view.

Algorithm 1 shows the navigation loop carrying out the
simulation and taking inputs into account. When setting the
scenario, we are placing virtual boundaries around the
periphery of the tracking area defined by the origin and limit
markers. Additionally, dynamic obstacles are being handled
by adding non-motorized agents with a bounding circle, and

3 http://gamma.cs.unc.edu/RVO2/

Figure 3. Screenshot of Controller GUI tablet app.

so taking part of the simulation as any other robot with no
velocity.

Two high-level motion behaviors, social avoidance and
following peers, were implemented by checking constraints
and adding plan goals to the robots involved. In this way, we
can just rely on the collision avoidance algorithm.
Additionally, there is a fatigue model implemented to control
the depletion and the recovery of surfacebot’s virtual energy,
which can be activated by the designer to prevent children to
continuously driving the robot without focusing on the
storytelling activity.

Algorithm 1: Navigation loop
Setup ROS topics

Setup Scenario

Do

 Sleep based on processing frequency

 Add new agents, if any

 Update tracked agent

Apply Kalman filter on rotation

 Process command requests

 Calculate Preferred Velocities based on next subgoals

 Carry out simulation Step

 Set Wheel Velocities and send out movement commands

Until navigation is stopped

III. CONCLUSIONS AND FUTURE WORK

We have presented a high-level navigation planner for a
multi-robot system suited to collaborative storytelling. It relies
on the ORCA formulation found in the literature in order to
supply collision-free navigation. We have developed several
additional features capable of delivering social motion
behaviour in such way that it frees users from the fine-grained
control interactions that would have a negative effect on the
main goal of the ongoing user activity.

For future work, there are several possible avenues for
improvement. We have noticed that the adjustment of
algorithm parameters is sensitive. For instance, the kinematic
model used for the differential-drive robots needed an enlarged
radius and may therefore lose maneuverability if the available
space is not large enough for the number of robots involved.
Additionally, the characteristics of the actual setting and
physical robots used can affect the speed and the rotation
torque, and the grip with the surface. This is critical in settings
that have to be easy to deploy. Thus, we need to consider
models fitting the real shape [5] and methods to automatically
calibrate the physical parameters.

The management of dynamic obstacles is handled by
modeling non-motorized agents that can only be moved by
forces outside of the control of the system. Considering more
complex shapes than simple bounding circles would give more
freedom to design scenarios and applications. The interaction
between the navigation provided and the special motion
behavior can be studied specifically. For example, when a
robot is rotated in place, imperfections in the physical system
can lead to unintended forces and movements that differs from
ideal or simulated rotations. It could trigger some other robot
to move because the responsibility of avoiding collisions is
shared between robots. In applications with similar
requirements to us, this can be certainly troublesome and
annoying for users but could be addressed by implementing a
priority scheme between robots and/or type of motion goals.

ACKNOWLEDGMENT

The core work has been carried out at University of Twente.
Research partially funded by H2020 MSCA-IF grant No.
701991 coBOTnity, European Regional Development Fund
and Consellería de Cultura, Educación e Ordenación
Universitaria (acc.2016-2019, ED431G/08). Special credits
go to R. Campisi, L. Sandfort, W. Timmermans and W. van
Veelen for contributing to this research project while working
in their group assignment.

REFERENCES

[1] Bellas F. et al. (2018) The Robobo Project. Bringing Educational

Robotics Closer to Real-World Applications. In: Lepuschitz W.,

Merdan M., Koppensteiner G., Balogh R., Obdržálek D. (eds) Robotics

in Education. RiE 2017. Advances in Intelligent Systems and

Computing, vol 630. Springer, Cham.

[2] A. Catala, M. Theune, H. Gijlers, D. Heylen. Storytelling as a creative

activity in the classroom. In: Proceedings of the 2017 ACM SIGCHI

Conference on Creativity and Cognition (C&C '17), pp. 237-242, ACM,

New York, NY, USA (2017).

[3] A. Catala, M. Theune, D. Reidsma, S. ter Stal, D. Heylen: Exploring

children’s use of a remotely controlled surfacebot character for

storytelling. In: Chisik Y., Holopainen J., Khaled R., Luis Silva J.,

Alexandra Silva P. (eds) Intelligent Technologies for Interactive

Entertainment (INTETAIN 2017). LNCS, vol 215. Springer, Cham

(2018).

[4] S. Garrido-Jurado, R. Muñoz-Salinas, F.J. Madrid-Cuevas, M.J. Marín-

Jiménez, Automatic generation and detection of highly reliable fiducial

markers under occlusion, Pattern Recognition, Volume 47, Issue 6,

2014, Pages 2280-2292, ISSN 0031-3203.

[5] A. González-Sieira M. Mucientes A. Bugarín. (2016) An Adaptive

Multi-resolution State Lattice Approach for Motion Planning with

Uncertainty. In: Reis L., Moreira A., Lima P., Montano L., Muñoz-

Martinez V. (eds) Robot 2015: Second Iberian Robotics Conference.

Advances in Intelligent Systems and Computing, vol 417. Springer,

Cham

[6] R., Grieder, J. Alonso-Mora, C. Bloechlinger, R. Siegwart, P.

Beardsley. (2014). Multi-robot control and interaction with a hand-held

tablet. In ICRA 2014 Workshop on Multiple Robot Systems. IEEE.

[7] J. M. Kory Westlund, H. Won Park, R. Williams, C. Breazeal. 2018.

Measuring young children's long-term relationships with social robots.

In Proceedings of the 17th ACM Conference on Interaction Design and

Children (IDC '18). ACM, New York, NY, USA, 207-218.

[8] A., Krzywinski, W. Chen: Hi Robot: Evaluating Robotale. In:

Proceedings of the 2015 ACM International Conference on Interactive

Tabletops and Surfaces, ITS 2015, pp. 367-372, (2015).

[9] I. Leite, M. McCoy, M. Lohani, D. Ullman, N. Salomons, C. Stokes, S.

Rivers, B. Scassellati. 2015. Emotional Storytelling in the Classroom:

Individual versus Group Interaction between Children and Robots. In

Proceedings of the Tenth Annual ACM/IEEE International Conference

on Human-Robot Interaction (HRI '15). ACM, New York, NY, USA,

75-82.

[10] A. Özgür, S. Lemaignan, W. Johal, M. Beltran, M. Briod, L. Pereyre,

F. Mondada,, P. Dillenbourg. 2017. Cellulo: Versatile Handheld Robots

for Education. In Proceedings of the 2017 ACM/IEEE International

Conference on Human-Robot Interaction (HRI '17). ACM, New York,

NY, USA, 119-127.

[11] J. Snape, J. van den Berg, S. J. Guy and D. Manocha, "Smooth and

collision-free navigation for multiple robots under differential-drive

constraints," 2010 IEEE/RSJ International Conference on Intelligent

Robots and Systems, Taipei, 2010, pp. 4584-4589.

[12] S. Magnenat, J. Shin, F. Riedo, R. Siegwart, M. Ben-Ari. 2014.

Teaching a core CS concept through robotics. In Proceedings of the

2014 conference on Innovation & technology in computer science

education (ITiCSE '14). ACM, New York, NY, USA, 315-320.

[13] J. van den Berg, S.J. Guy., M. Lin, D. Manocha. (2011) Reciprocal n-

Body Collision Avoidance. In: Pradalier C., Siegwart R., Hirzinger G.

(eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 70.

Springer, Berlin, Heidelberg.

